Выброс вредных веществ в атмосферу. Выбросы вредных веществ в атмосферу

Промышленно-экономическое развитие сопровождается, как правило, ростом загрязнения окружающей среды. Большинство крупных городов характеризуются значительной концентрацией промышленных объектов на относительно незначительных территориях, что представляет опасность для здоровья людей.

Одним из экологических факторов, оказывающих наиболее выраженное влияние на здоровье человека, является качество воздуха. Особую опасность в настоящее время представляют выбросы в атмосферу загрязняющих веществ. Это обусловлено тем, что токсиканты поступают в человеческий организм в основном через дыхательные пути.

Выбросы в атмосферу: источники

Различают природные и антропогенные источники поступления загрязнителей в воздух. Основными примесями, которые содержат выбросы в атмосферу от естественных источников, являются пыль космического, вулканического и растительного происхождения, газы и дым, образующиеся в результате лесных и степных пожаров, продукты разрушения и выветривания горных пород и почв и пр.

Уровни загрязнения воздушной среды природными источниками носят фоновый характер. Они достаточно мало изменяются со временем. Основными источниками поступления в воздушный бассейн загрязняющих веществ на современном этапе являются антропогенные, а именно − промышленность (различные отрасли), сельское хозяйство и автотранспорт.

Выбросы предприятий в атмосферу

Самыми крупными «поставщиками» различных загрязнителей в воздушный бассейн являются металлургические и энергетические предприятия, химическое производство, стройиндустрия, машиностроение.

В процессе сжигания топлива различных видов энергетическими комплексами в атмосферу выделяются большие количества сернистого ангидрида, оксидов углерода и азота, сажи. Также в выбросах (в меньших количествах) присутствует ряд других веществ, в частности углеводороды.

Основные источники пылегазовых выбросов в металлургическом производстве - плавильные печи, разливочные установки, травильные отделения, агломерационные машины, дробильноразмольное оборудование, разгрузка-погрузка материалов и пр. Наибольшую долю среди общего количества веществ, поступающих в атмосферу, занимают окись углерода, пыль, ангидрид сернистый, оксид азота. В несколько меньших количествах выбрасываются марганец, мышьяк, свинец, фосфор, пары ртути и пр. Также в процессе сталеплавильного производства выбросы в атмосферу содержат парогазовые смеси. В их состав входит фенол, бензол, формальдегид, аммиак и ряд других опасных веществ.

Вредные выбросы в атмосферу от предприятий химической отрасли, несмотря на небольшие объемы, представляют особую опасность для природной среды и человека, поскольку характеризуются высокой токсичностью, концентрированностью и значительным разнообразием. Поступающие в воздух смеси в зависимости от вида выпускаемой продукции могут иметь в своем составе летучие органические соединения, соединения фтора, нитрозные газы, твердые вещества, хлористые соединения, сероводород и пр.

При производстве стройматериалов и цемента выбросы в атмосферу содержат значительные количества различной пыли. Основными технологическими процессами, приводящими к их образованию, являются измельчение, обрабатывание шихт, полуфабрикатов и продуктов в потоках горячих газов и пр. Вокруг заводов, производящих различные стройматериалы, могут образовываться зоны загрязнения радиусом до 2000 м. Они характеризуются высокой концентрацией в воздухе пыли, содержащей частицы гипса, цемента, кварца, а также ряда других загрязняющих веществ.

Выбросы автотранспорта

В крупных городах огромное количество загрязнителей в атмосферу поступает от автотранспортных средств. По разным оценкам, на их долю приходится от 80 до 95%. состоят из большого количества токсичных соединений, в частности оксидов азота и углерода, альдегидов, углеводородов и пр. (всего около 200 соединений).

Наибольшие объемы выбросов отмечаются в зонах расположения светофоров и перекрестков, где автомобили передвигаются на малой скорости и в режиме холостого хода. Расчет выбросов в атмосферу показывает, что основными составляющими выхлопов в этом случае являются и углеводороды.

При этом следует отметить, что, в отличие от стационарных источников выбросов, работа автотранспорта приводит к загрязнению воздуха на городских улицах на высоте человеческого роста. В результате вредному воздействию загрязнителей подвергаются пешеходы, жители расположенных у дорог домов, а также произрастающая на прилегающих территориях растительность.

Сельское хозяйство

Влияние на человека

Согласно различным источникам, имеется прямая связь между загрязнением воздуха и рядом заболеваний. Так, например, длительность течения респираторных заболеваний у детей, которые живут в относительно загрязненных районах, в 2-2,5 раза больше, нежели у тех, что проживают в других районах.

Кроме того, в городах, характеризующихся неблагоприятной экологической обстановкой, у детей отмечены функциональные отклонения в системе иммунитета и кровообразования, нарушения компенсаторно-адаптационных механизмов к условиям внешней среды. Многими исследованиями выявлена также связь между загрязнением воздуха и смертностью людей.

Основными составляющими выбросов, поступающих в воздух от различных источников, являются взвешенные вещества, оксиды азота, углерода и серы. Выявлено, что зоны с превышением ПДК по NO 2 и CO охватывают до 90% городской территории. Приведенные макрокомпоненты выбросов способны вызвать серьезные заболевания. Накопление этих загрязнений приводит к повреждению слизистых оболочек верхних дыхательных путей, развитию легочных заболеваний. Кроме того, повышенные концентрации SO 2 могут вызвать дистрофические изменения в почках, печени и сердце, а NO 2 - токсикозы, врожденные аномалии, сердечную недостаточность, нервные расстройства и др. Некоторыми исследованиями выявлена взаимосвязь между заболеваемостью раком легких и концентрациями SO 2 и NO 2 в воздухе.


Выводы

Загрязнение окружающей природной среды и, в частности, атмосферы, имеет неблагоприятные последствия для здоровья не только настоящего, но и последующих поколений. Поэтому можно смело утверждать, что разработка мероприятий, направленных на то, чтобы уменьшить выбросы вредных веществ в атмосферу, − одна из самых актуальных на сегодняшний день проблем человечества.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПИЩЕВЫХ ПРОИЗВОДСТВ»

О.В. ГУТИНА, МАЛОФЕЕВА Ю.Н.

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ к решению задач по курсу

«ЭКОЛОГИЯ»

для студентов всех специальностей

Москва 2006 г.

1. Контроль качества атмосферного воздуха в зоне промышленных предприятий.

Задание 1. Расчет рассеивания дымовых газов из трубы котельной

2. Технические средства и методы защиты атмосферы.

Задание 2.

3. Контроль над загрязнением окружающей среды. Нормативно-правовые основы охраны природы. Плата за наносимый ущерб окружающей среды.

Задание 3. «Расчет технологических выбросов и плата за загрязнение ОПС на примере хлебозавода»

Литература

Рассеивание в атмосфере выбросов промышленных предприятий

Выбросы – поступление загрязняющих веществ в атмосферу. Качество атмосферного воздуха определяется концентрацией содержащихся в нем загрязняющих веществ, которая не должна превышать санитарно – гигиенический норматив – предельно допустимую концентрацию(ПДК) для каждого загрязняющего вещества. ПДК – максимальная концентрация загрязняющего вещества в атмосферном воздухе, отнесенная к определенному времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека не оказывает на него вредного влияния, включая отдаленные последствия.

При существующих технологиях получения целевых продуктов и существующих способах очистки выбросов уменьшение концентраций опасных загрязнений в окружающей среде обеспечивают увеличением площади рассеивания, путем выведения выбросов на большую высоту. При этом предполагают, что достигается только такой уровень аэротехногенного загрязнения окружающей среды, при котором еще возможно естественное самоочищение воздуха.

Наибольшая концентрация каждого вредного вещества С м (мг/м 3) в приземном слое атмосферы не должна превышать предельно допустимой концентрации :

Если в состав выброса входят несколько вредных веществ, обладающих однонаправленным действием, т.е. взаимоусиливают друг друга, то должно выполняться неравенство:

(2)

С 1 - С n – фактическая концентрация вредного вещества в атмосферном

воздухе, мг/м 3 ,

ПДК - предельно допустимые концентрации загрязняющих веществ (МР).

Научно обоснованные нормы ПДК в приземном слое атмосферы должны обеспечиваться контролем нормативов для всех источников выбросов. Таким экологическим нормативом является предельно допустимый выброс

ПДВ - максимальный выброс загрязняющего вещества, который, рассеиваясь в атмосфере, создает приземную концентрацию этого вещества не превышающую ПДК с учетом фоновой концентрации.

Загрязнение окружающей среды при рассеивании выбросов предприятий через высокие трубы зависит от многих факторов: высоты трубы, скорости выбрасываемого газового потока, расстояния от источника выброса, наличия нескольких близко расположенных источников выбросов, метеорологических условий и др.

Высота выброса и скорость газового потока. С увеличением высоты трубы и скорости выбрасываемого газового потока эффективность рассеивания загрязнений увеличивается, т.е. рассевание выбросов происходит в большем объеме атмосферного воздуха, над большей площадью поверхности земли.

Скорость ветра. Ветер – турбулентное движение воздуха над поверхностью земли. Направление и скорость ветра не остаются постоянными, скорость ветра возрастает при увеличении перепада атмосферного давления. Наибольшее загрязнение атмосферы возможно при слабых ветрах 0-5 м/с при рассеивании выбросов на малых высотах в приземном слое атмосферы . При выбросах из высоких источников наименьше е рассеивание загрязнений имеет место при скоростях ветра 1-7 м/с (в зависимости от скорости выхода струи газа из устья трубы).

Температурная стратификация . Способность поверхности земли поглощать или излучать тепло влияет на вертикальное распределение температуры в атмосфере. В обычных условиях при подъеме вверх на 1 км температура уменьшается на 6,5 0 : градиент температуры равен 6,5 0 /км . В реальных условиях могут наблюдаться отклонения от равномерного уменьшения температуры с высотой – температурная инверсия . Различают приземные и приподнятые инверсии . Приземные характеризуются появлением более теплого слоя воздуха непосредственно у поверхности земли, приподнятые – появлением более теплого слоя воздуха(инверсионного слоя) на некоторой высоте. В инверсионных условиях ухудшается рассеивание загрязнений, они концентрируются в приземном слое атмосферы. При выбросе загрязненного газового потока из высокого источника наибольшее загрязнение воздуха возможно при приподнятой инверсии, нижняя граница которой находится над источником выброса и наиболее опасной скорости ветра 1 – 7 м/с. Для низких источников выбросов наиболее неблагоприятным является сочетание приземной инверсии со слабым ветром.

Рельеф местности. Даже при наличии сравнительно небольших возвышенностей существенно изменяется микроклимат в отдельных районах и характер рассеивания загрязнений. Так в пониженных местах образуются застойные, плохо проветриваемые зоны с повышенной концентрацией загрязнений. Если на пути загрязненного потока находятся здания, то над зданием скорость воздушного потока увеличивается, сразу за зданием – снижается, постепенно увеличиваясь по мере удаления, и на некотором расстоянии от здания скорость потока воздуха принимает первоначальное значение. Аэродинамическая тень плохо проветриваемая зона, образующаяся при обтекании здания потоком воздуха. В зависимости от типа зданий и характера застройки образуются различные зоны с замкнутой циркуляцией воздуха, что может оказывать существенное влияние на распределение загрязнений.

Методика расчета рассеивания в атмосфере вредных веществ , содержащихся в выбросах, основана на определении концентраций этих веществ (мг/м 3) в приземном слое воздуха. Степень опасности загрязнения приземного слоя атмосферного воздуха выбросами вредных веществ определяется по наибольшему рассчитанному значению концентрации вредных веществ, которое может установиться на некотором расстоянии от источника выброса при наиболее неблагоприятных метеоусловиях (скорость ветра достигает опасного значения, наблюдается интенсивный турбулентный вертикальный обмен и др.).

Расчет рассеивания выбросов проводится по ОНД-86.

Максимальная приземная концентрация определяется по формуле:

(3)

A – коэффициент, зависящий от температурной стратификации атмосферы (значение коэффициента А принимается равным 140 для Центрального района РФ).

М – мощность выброса, масса загрязняющего вещества, выбрасываемого в единицу времени, г/с.

F – безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосфере (для газообразных веществ равен 1, для твердых- 1).

 – безразмерный коэффициент, учитывающий влияние рельефа местности (для равнинной – 1, для пересеченной – 2).

Н – высота источника выброса над уровнем земли, м.

 – разность между температурой, выбрасываемой газовоздушной смесью и температурой окружающего наружного воздуха.

V 1 – расход газовоздушной смеси, выходящей из источника выброса, м 3 /с.

m, n – коэффициенты, учитывающие условия выброса.

Предприятия, выбрасывающие в окружающую среду вредные вещества, должны быть отделены от жилой застройки санитарно-защитными зонами. Расстояние от предприятия до жилой застройки (размеры санитарно-защитной зоны) устанавливаются в зависимости от количества и вида выбрасываемых в окружающую среду загрязняющих веществ, мощности предприятия, особенностей технологического процесса. С 1981г. расчет санитарно-защитной зоны регламентируется государственным стандартам. СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов». По нему все предприятия разделены на 5 классов по степени их опасности. И в зависимости от класса устанавливается нормативная величина СЗЗ.

Предприятие (класс) Размеры санитарно-защитной зоны

I класс 1000 м

II класс 500 м

III класс 300 м

IV класс 100 м

V класс 50

Одна из функций санитарно-защитной зоны – биологическая очистка атмосферного воздуха средствами озеленения. Древесно-кустарниковые насаждения газопоглотительного назначения (фитофильтры ) способны поглощать газообразные загрязняющие вещества. Например, установлено, что луговая и древесная растительность может связывать 16-90% сернистого газа.

Задача №1 : Котельная промышленного предприятия оборудована котлоагрегатом, работающем на жидком топливе. Продукты сгорания: оксид углерода, окислы азота (окись азота и двуокись азота), сернистый ангидрид, мазутная зола, пятиокись ванадия, бензапирен, причем сернистый ангидрид и двуокись азота обладают однонаправленным действием на организм человека и образуют группу суммации.

В задаче требуется:

1) найти максимальную приземную концентрацию сернистого ангидрида и двуокиси азота;

2) расстояние от трубы до места появления С М;

Исходные данные:

    Производительность котельной – Q об =3000 МДж/ч;

    Топливо – сернистый мазут;

    КПД котельной установки –  к.у. =0.8;

    Высота дымовой трубы H=40 м;

    Диаметр дымовой трубы Д=0.4м;

    Температура выброса Т г =200С;

    Температура наружного воздуха Т в =20С;

    Кол-во уходящих газов от 1 кг сжигаемого мазута V г =22.4 м 3 /кг;

    Предельно-допустимая концентрация SO 2 в атмосферном воздухе –

С пдк а.в. =0.05 мг/м 3 ;

    Предельно-допустимая концентрация NO 2 в атмосферном воздухе –

С пдк а.в. =0.04 мг/м 3 ;

    Фоновая концентрация SO 2 – C ф =0.004 мг/м 3 ;

    Теплота сгорания топлива Q н =40.2 МДж/кг;

    Место расположения котельной – Московская область;

    Рельеф местности ­– спокойный (с перепадом высот 50м на 1км).

    Расчет максимальной приземной концентрации выполняется согласно нормативному документу ОНД-86 «Методика расчета концентраций в атмосферном воздухе ЗВ, содержащихся в выбросах предприятий».

С М =
,

 =Т Г – Т В = 200 – 20 = 180 о С.

Для определения расхода газовоздушной смеси найдем часовой расход топлива:

В ч =

V 1 =

m – безразмерный коэффициент, зависящий от условий выброса: скорости выхода газовоздушной смеси, высоты и диаметра источника выброса и разности температур.

f =

скорость выхода газовоздушной смеси из устья трубы определяется по формуле:

 о =

f= 1000

.

n – безразмерный коэффициент, зависящий от условий выброса: объёма газовоздушной смеси, высоты источника выброса и разности температур.

Определяется по характеристической величине

V М = 0,65

n = 0,532V м 2 – 2,13V м + 3,13 = 1,656

М = V 1  а, г/с,

М SO 2 = 0,579  3 =1,737 г/с,

М NO 2 =0,8  0,579 = 0,46 г/с.

Максимальная приземная концентрация:

сернистого ангидрида –

С М =

двуокиси азота -

С м = .

    Находим расстояние от трубы до места появления С М по формуле:

Х М =

где d – безразмерный коэффициент, зависящий от условий выброса: скорости выхода газовоздушной смеси, высоты и диаметра источника выброса, разности температур и объёма газовоздушной смеси.

d = 4,95V м (1 + 0,28f), при 0,5 V М  2,

d = 7 V М (1 + 0,28f), при V М  2.

У нас V М = 0,89  d = 4,95 0,89(1 + 0,280,029) = 4,7

Х М =

    Т.к. приземная концентрация сернистого ангидрида превышает ПДК сернистого ангидрида в атмосферном воздухе, то величину ПДВ сернистого ангидрида для рассматриваемого источника определяем, учитывая необходимость выполнения уравнения суммации

Подставив наши значения, получаем:

что больше 1. Для выполнения условий уравнения суммации необходимо уменьшить массу выброса сернистого ангидрида, сохранив выброс двуокиси азота на прежнем уровне. Рассчитаем приземную концентрацию сернистого ангидрида при котором котельная не будет загрязнять окружающую среду.

=1- = 0,55

С SO2 = 0,55  0,05 = 0,0275 мг/м 3

Эффективность метода очистки, обеспечивающую снижение массы выброса сернистого ангидрида от первоначального значения М = 1,737 г/с до 0,71 г/с определяем по формуле:

%,

где С ВХ – концентрация загрязняющего вещества на входе в газоочистную

установку, мг/м 3 ,

С ВЫХ – концентрация загрязняющего вещества на выходе из газо-

очистной установки, мг/м 3 .

Т.к.
, а
, то

тогда формула приобретет вид:

Следовательно, при выборе метода очистки необходимо, чтобы его эффективность была не ниже 59%.

Технические средства и методы защиты атмосферы.

Выбросы промышленных предприятий характеризуются большим разнообразием дисперсного состава и других физико-химических свойств. В связи с этим разработаны различные методы их очистки и типы газо- и пылеуловителей - аппаратов, предназначенных для очистки выбросов от загрязняющих веществ.

М
етоды очистки промышленных выбросов от пыли можно разделить на две группы: методы улавливания пыли«сухим» способом и методы улавливания пыли«мокрым» способом . Аппараты обеспыливания газов включают: пылеосадительные камеры, циклоны, пористые фильтры, электрофильтры, скрубберы и др.

Наиболее распространенными установками сухого пылеулавливания являются циклоны различных типов.

Они используются для улавливания мучной и табачной пыли, золы, образующейся при сжигании топлива в котлоагрегатов. Газовый поток поступает в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса. Под действием центробежной силы частицы пыли отбрасываются к стенке циклона и под действием силы тяжести опадают в бункер для сбора пыли 4, а очищенный газ выходит через выходную трубу 3. Для нормальной работы циклона необходима его герметичность, если циклон не герметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Задачи по очистке газов от пыли могут успешно решаться цилиндрическими (ЦН-11, ЦН-15, ЦН-24, ЦП-2) и коническими (СК-ЦН-34, СК-ЦН-34М, СКД-ЦН-33) циклонами, разработанными НИИ по промышленной и санитарной очистке газов (НИИОГАЗ). Для нормального функционирования избыточное давление газов, поступающих в циклоны, не должно превышать 2500 Па. При этом во избежание конденсации паров жидкости t газа выбирается на 30 – 50 о С выше t точки росы, а по условиям прочности конструкции – не выше 400 о С. Производительность циклона зависит от его диаметра, увеличиваясь с ростом последнего. Эффективность очистки циклонов серии ЦН падает с ростом угла входа в циклон. С увеличением размера частиц и уменьшением диаметра циклона эффективность очистки возрастает. Цилиндрические циклоны предназначены для улавливания сухой пыли аспирационных систем и рекомендованы к использованию для предварительной очистки газов на входе фильтров и электрофильтров. Циклоны ЦН-15 изготавливают из углеродистой или низколегированной стали. Канонические циклоны серии СК, предназначенные для очистки газов от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН за счет большего гидравлического сопротивления.

Для очистки больших масс газов применяют батарейные циклоны, состоящие из большего числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами. Отечественная промышленность выпускает батарейные циклоны типа БЦ-2, БЦР-150у и др.

Ротационные пылеуловители относятся к аппаратам центробежного действия, которые одновременно с перемещением воздуха очищают его от фракции пыли крупнее 5 мкм. Они обладают большой компактностью, т.к. вентилятор и пылеуловитель обычно совмещены в одном агрегате. В результате этого при монтаже и эксплуатации таких машин не требуется дополнительных площадей, необходимых для размещения специальных пылеулавливающих устройств при перемещении запыленного потока обыкновенным вентилятором.

Конструктивная схема простейшего пылеуловителя ротационного типа представлена на рисунке. При работе вентиляторного колеса 1 частицы пыли за счет центробежных сил отбрасываются к стенке спиралеобразного кожуха 2 и движутся по ней в направлении выхлопного отверстия 3. Газ, обогащенный пылью, через специальное пылеприемное отверстие 3 отводится в пылевой бункер, а очищенный газ поступает в выхлопную трубу 4.

Для повышения эффективности пылеуловителей такой конструкции необходимо увеличить переносную скорость очищаемого потока в спиральном кожухе, но это ведет к резкому повышению гидравлического сопротивления аппарата, или уменьшить радиус кривизны спирали кожуха, но это снижает его производительность. Такие машины обеспечивают достаточно высокую эффективность очистки воздуха при улавливании сравнительно крупных частиц пыли – свыше 20 – 40 мкм.

Более перспективными пылеотделителями ротационного типа, предназначенными для очистки воздуха от частиц размером  5 мкм, являются противопоточные ротационные пылеотделители (ПРП). Пылеотделитель состоит из встроенного в кожух 1 полого ротора 2 с перфорированной поверхностью и колеса вентилятора 3. Ротор и колесо вентилятора насажены на общий вал. При работе пылеотделителя запыленный воздух поступает внутрь кожуха, где закручивается вокруг ротора. В результате вращения пылевого потока возникают центробежные силы, под действием которых взвешенные частицы пыли стремятся выделиться из него в радиальном направлении. Однако на эти частицы в противоположном направлении действуют силы аэродинамического сопротивления. Частицы, центробежная сила которых больше силы аэродинамического сопротивления, отбрасываются к стенкам кожуха и поступают в бункер 4. Очищенный воздух через перфорацию ротора с помощью вентилятора выбрасывается наружу.

Эффективность очистки ПРП зависит от выбранного соотношения центробежной и аэродинамической сил и теоретически может достигать 1.

Сравнение ПРП с циклонами свидетельствует о преимуществах ротационных пылеуловителей. Так, габаритные размеры циклона в 3 – 4 раза, а удельные энергозатраты на очистку 1000 м 3 газа на 20 – 40 % больше, чем у ПРП при прочих равных условиях. Однако широкое распространение пылеуловители ротационного действия не получили из-за относительной сложности конструкции и процесса эксплуатации по сравнению с другими аппаратами сухой очистки газов от механических загрязнений.

Для разделения газового потока на очищенный газ и обогащенный пылью газ используют жалюзийный пылеотделитель. На жалюзийной решетке 1 газовый поток расходом Q разделяется на два протока расходом Q 1 и Q 2 . Обычно Q 1 = (0.8-0.9)Q, а Q 2 =(0.1-0.2)Q. Отделение частиц пыли от основного газового потока на жалюзийной решетке происходит под действием инерционных сил, возникающих при повороте газового потока на входе в жалюзийную решетку, а также за счет эффекта отражении частиц от поверхности решетки при соударении. Обогащенный пылью газовый поток после жалюзийной решетки направляется к циклону, где очищается от частиц, и вновь вводится в трубопровод за жалюзийной решеткой. Жалюзийные пылеотделители отличаются простотой конструкции и хорошо компонуются в газоходах, обеспечивая эффективность очистки 0,8 и более для частиц размером более 20 мкм. Они применяются для очистки дымовых газов от крупнодисперсной пыли при t до 450 – 600 о С.

Электрофильтр. Электрическая очистка один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Осадительные электроды 2 присоединяют к положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды подсоединяют к отрицательному полюсу. Частицы, поступающие в электрофильтр, ок положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды приедаче заряда ионов примесей ана. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 бычно уже имеют небольшой заряд, полученный за счет трения о стенки трубопроводов и оборудования. Таким образом, отрицательно заряженные частицы движутся к осадительному электроду, а положительно заряженные частицы оседают на отрицательном коронирующем электроде.

Фильтры широко используют для тонкой очистки газовых выбросов от примесей. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них. Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтро-

Загрязнение воздуха в Москве обусловлено повышенным содержание ядовитых примесей в приземном слое московского воздуха. Оно вызван выхлопными газами, выбросами промышленных предприятий, выхлопами ТЭЦ. От грязного воздуха в Москве ежегодно умирает в четыре раза больше, чем от автокатастроф- около 3 500 человек.

Особо опасно жить в Москве в полное безветрие. Таких дней здесь ежегодно около 40. Именно эти дни врачи называют "днями смертности"- ведь в одном кубе московского воздуха 7 миллиграммов отравляющих веществ. Вот вам ещё на закусочку: ежегодно в воздух Москвы выбрасывается 1,3 миллионa тонн отравы.

Отчего умирают москвичи

Каждый москвич ежегодно вдыхает более 50 килограмм различных отравляющих веществ. В год! В особой группе риска все, кто живет вдоль центральных улиц, особенно в квартирах ниже пятого этажа. На пятнадцатом этаже концентрация отравы в два раза меньше, на тридцатом- в десять раз меньше.

Главными отравителями воздуха Москвы являются губят диоксид азота и оксид углерода. Именно они дают 90% всей палитры ядов московского приземного воздуха. Эти газы приводят к астме.

Следующим отравляющим веществом является диоксид серы. Его "поставляют" небольшие московские и подмосковные котельные, работающие на жидком топливе. Диоксид серы приводит к отложению бляшек на стенках сосудов и к инфарктам. Не надо забывать, что чаще всего москвичи умирают именно от сердечно- сосудистых заболеваний.

Далее по списку московской отравы идут взвешенные вещества. Это мелкая пыль (мелкодисперсные частицы) до 10 микрон. Они опаснее любых автовыхлопов. Образуются они от частиц шин, асфальта, технологических выхлопов.

Взвешенные вещества с налипшими на них частицами отравы попадают в лёгкие и остаются там навсегда. Когда в лёгких накапливается определённая критическая масса, начинаются лёгочные заболевания и рак лёгких. Это практически 100% смерть. Ежегодно от рака умирает 25 000 москвичей.

Выбросы автотранспортных средств- самое опасное в области экологии. Выхлопы автомобилей- это 80% от всей отравы, которую получает московский воздух. Но дело даже не в этом- в отличие от ТЭЦ и труб промышленных предприятий выхлопы автомобилей производятся не на высоте заводских труб- десятков метров, а прямо в наши лёгкие.

В особую группу риска попадают водители, проводящие на дорогах столицы более 3 часов в день. Ведь в автомобиле нормы предельно допустимых концентраций превышены в 10 раз. Каждый автомобиль выбрасывает за год в воздух оравы столько, сколько весит сам.

Именно поэтому жить где- то в Капотне или Люблино гораздо менее опасно, чем в самых престижных районах Москвы. Ведь на Тверской, на Остоженке трафик автомобилей в разы больше, чем на промышленных окраинах.

Особо нужно подчеркнуть концентрацию отравляющих веществ. Москва устроена так, что всю гарь сдувает на юго- восток- именно сюда заколдованная роза ветров Москвы направляет всю отраву. Мало этого- юго- восток Москвы ещё и самое низкое и холодное место Москвы. А это значит, что отравленный воздух из центра подолгу задерживается именно здесь.

Загрязнение воздуха Москвы от ТЭЦ

В прошедшем году обстановка с Московскими ТЭЦ (впрочем, как и всегда) значительно ухудшилась. Москва требует все больше электроэнергии и тепла, ТЭЦ Москвы обеспечивает воздух столицы дымом и отравляющими веществами. В целом по энергетической системе суммарный расход топлива против прошлого года увеличился на 1943 тысячи тонн или почти на 8%.

Основа выбросов ТЭЦ

  • Угарный газ (диоксид углерода). Приводит к лёгочным заболеваниям и поражению нервной системы
  • Тяжелые металлы. Как и другие отравляющие вещества тяжелые металлы концентрируются и в почвах и в организме человека. Они не выводятся никогда.
  • Взвешенные вещества. Они приводят к раку лёгких
  • Диоксид серы. Ка уже говорилось, диоксид серы приводит к отложению бляшек на стенках сосудов и к инфарктам.
ТЭЦ и районные котельные, работающие на угле и мазуте, относятся к первому классу опасности. Расстояние от ТЭЦ до места нахождения человека должно быть не менее километра. В связи с этим непонятно расположение такого большого количества ТЭЦ и районных котельных вплотную у жилых домов. Посмотрите на карту задымления Москвы.

Крупные ТЭЦ Москвы:

  1. ТЭЦ-8 адрес Остаповский проезд, дом 1.
  2. ТЭЦ-9 адрес Автозаводская, дом 12, корп.1.
  3. ТЭЦ-11 адрес ш. Энтузиастов, дом 32.
  4. ТЭЦ-12 адрес Бережковская наб., дом 16.
  5. ТЭЦ-16 адрес ул. 3-я Хорошевская, дом 14.
  6. ТЭЦ-20 адрес ул. Вавилова, дом 13.
  7. ТЭЦ-21 адрес ул. Ижорская, дом 9.
  8. ТЭЦ-23 адрес ул. Монтажная, дом 1/4.
  9. ТЭЦ-25 адрес ул. Генерала Дорохова, дом 16.
  10. ТЭЦ-26 адрес ул. Востряковский проезд, дом 10.
  11. ТЭЦ-28 адрес ул. Ижорская, дом 13.
  12. ТЭЦ-27 адрес Мытищенский район, п.Челобитьево (за МКАД)
  13. ТЭЦ-22 адрес г.Дзержинский ул. Энергетиков, дом 5 (за МКАД)

Загрязнение воздуха Москвы от мусоросжигательных заводов


Посмотрите на расположение мусоросжигательных заводов в Москве:


В таких зонах, в зависимости от расстояния до трубы:

  • Нельзя находиться более получаса (300 метров до труб завода)
  • Нельзя находится более суток (пятьсот метров до труб завода)
  • Нельзя жить (километр до труб завода)
  • Жизнь проживающих в этой зоне буде короче на пять лет (пять километров до труб завода).
Конкретно для Москвы в случае неблагоприятной розы ветров обязательно будут неблагоприятные последствия для здоровья. Как писал “Wall Street Journal”- Мусоросжигательный завод-это устройство, которое производит ядовитые токсичные вещества, из относительно безопасных материалов.

В воздухе образуются самые ядовитые вещества на планете- диоксины, канцерогенные соединения, тяжелые металлы. Так, мусоросжигательный завод в промзоне "Руднево", имеющий мощность больше, чем все остальные московские заводы вместе взятые, находится в зоне, где идет активное строительство новостроек- вблизи Люберец.

Этому московскому региону не повезло больше других- именно здесь находятся люберецкие поля аэрации- место, куда десятилетиями сливали всю отраву из канализации Москвы. Именно здесь и ведется массовое строительство новостроек для обманутых дольщиков.

Продукты работы мусоросжигателя гораздо опаснее для человека чем просто отходы, так как все отходы, которые поступают на МСЗ, приходят в “связанном состоянии”. После сжигания все яды освобождаются, включая ртуть и тяжелые металлы. Кроме этого, появляются новые виды вредных соединений- соединения хлора, сернистый газ, окислы азота- более 400 соединений.

Причем ловушками вылавливаются только самые безвредные вещества- пыль, пепел. Тогда как SO2, CO, NOx, НСl- то есть основные разрушители здоровья практически не удается отфильтровать.

С диоксинами гораздо сложнее. Защитники мусоросжигательных заводов Москвы уверяют, что при 1000 градусах горения, диоксины сгорают, однако это полная чушь- при снижении температуры диоксины взникают вновь, причем чем выше температура сгорания, тем больше окислов азота.

И, наконец- то, шлаки. Защитники МСЗ утверждают, что шлаки абсолютно безопасны и что из них делать шлакоблоки- строить дома. Однако сами почему- то строят дома из экологически чистых материалов.

Жалко, что лоббистам МСЗ не приходит в голову, что гораздо выгоднее отходы перабатывать- из половины получается промышленный метанол, который с готовностью покупает промышленность, дополнительное сырье получает бумажная промышленность и ряд других отраслей.

Смертность в районах мусоросжигательных заводов в Москве

По свидетельству европейских ученых, которые проводили изучения этой темы, у людей, подвергшихся воздействию мусоросжигательных заводов увеличилась смертность:

  • В 3,5 раза от рака легких
  • В 1,7 раза- от рака пищевода
  • В 2,7 раза от рака желудка
  • Детская смертность выросла в два раза
  • На четверть выросло количество уродств у новорожденных
Это отмечено в Австрии, Германии, Великобритании, Италии, Дании, Бельгии, Франции, Финляндии. Наша статистика молчит- исследование не проводились. Думаем внутри себя.

Почему в Москве нельзя сжигать мусор:

  • В мусоре за рубежом отсутствуют ртутные лампы- у нас они есть
  • За границей организован прием отработанных батареек- у нас все сжигается
  • В Европе и Америке организована переработка бытовой техники, красок и химических отходов- на московских заводах все это горит синим пламенем.
Вдыхайте глубже.

Атмосферный воздух - самая важная природная среда для жизни человека. В этой статье мы расскажем о том, как выбросы веществ в атмосферу влияют на состав и качество воздуха, чем грозит загрязнение атмосферы и как этому противостоять.

Что такое атмосфера

Из школьного курса физики мы знаем, что атмосфера – это газовая оболочка планеты Земля. Атмосфера состоит их двух частей: верхней и нижней. Нижняя часть атмосферы называется тропосферой. Именно в нижней части атмосферы сосредоточена основная масса атмосферного воздуха. Здесь происходят процессы, влияющие на погоду и климат у поверхности земли. Эти процессы изменяют состав и качество воздуха. На земле происходят процессы выброса веществ в атмосферу. В результате этих выбросов в атмосферу поступают твердые частицы: пыль, зола и летучие газообразные химические вещества: оксиды серы, оксиды азота, оксиды углерода, углеводороды.

Классификация процессов выброса веществ

Природные источники выброса веществ

Выброс веществ в атмосферу может происходить в результате природных явлений. Представьте, какое огромное количество вредных газов и пепла выбрасывает в атмосферу проснувшийся вулкан. И все эти вещества разносятся воздушными потоками по всему земному шару. Лесной пожар или пыльная буря также наносят вред окружающей среде и атмосфере. Конечно же, природа долго восстанавливается после таких природных катастроф.

Антропогенные источники выбросов веществ

Основная масса веществ, которые выбрасываются в атмосферу, создается человеком. Человек начал влиять на природу в тот момент, когда научился добывать огонь. Но дым, который появился вместе с огнем, не наносил большого вреда природе. Со временем человечество изобрело машины. Появилось производство и промышленные предприятия, был изобретен автомобиль. Завод или фабрика производили продукцию. Но вместе с продукцией вырабатывались вредные вещества, которые выбрасывались в атмосферу.

В наше время основными источниками выбросов в атмосферу являются промышленные предприятия, котельные, транспорт. Самую большой вред окружающей среде наносят предприятия, выпускающие металл, и предприятия, которые производят химическую продукцию.

Производственные процессы, связанные со сжиганием топлива

Тепловые электростанции, выбрасывающие металлургические и химические предприятия, котельные установки твердого и жидкого топлива сжигают топливо и вместе с дымом в атмосферу выбрасывают сернистый и углекислый газ, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка, оксилы азота. Вредные вещества также присутствуют в выхлопах автомобилей и современных турбореактивных самолетов.

Производственные процессы, не связанные со сжиганием топлива

Такие производственные процессы, как добыча ископаемых в карьерах, взрывные работы, выбросы вентиляционных стволов на шахтах, выбросы атомных реакторов, производство строительных материалов, происходят без сжигания топлива, но в атмосферу выбрасываются вредные вещества в виде пыли и ядовитых газов. Особо опасным считается химическое производство из-за возможности аварийных выбросов в атмосферу оксидов серы, азота, углерода, пыли и сажи, хлорорганических и нитросоединений, техногенных радионуклидов, которые считаются очень токсичными веществами.

Вещества, выбрасываемые в атмосферу, разносятся на большие расстояния. Такие вещества могут смешиваться с воздухом нижних слоев атмосферы и называются первичными химическими соединениями. Если первичные вещества вступают в химические реакции с основными компонентами воздуха - кислородом, азотом и водяным паром, то образуются фотохимические окислители и кислоты, которые называются вторичными загрязняющими веществами. Они могут вызвать появление кислотных дождей, фотохимического смога и образование озона в атмосфере. Именно вторичные загрязнители особенно опасны для человека и окружающей среды.

Как же защитить окружающую среду от загрязнения? Одним из методов решения этой проблемы является очистка веществ, выбрасываемых в атмосферу с помощью специальных химических аппаратов. Это не решит проблему полностью, но позволит минимизировать вред, наносимый природе вредными веществами, которые образуются в результате человеческой деятельности.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Влияние выбросов в атмосферу на экологическую обстановку планеты и здоровье всего человечества крайне неблагоприятно. Практически постоянно в воздух попадает и рассеивается по нему масса разных соединений, и некоторые распадаются крайне долго. Особенно актуальной проблемой являются автомобильные выбросы, но существуют и другие источники. Стоит рассмотреть их подробно и выяснить, как избежать печальных последствий.

Атмосфера и её загрязнение

Атмосфера – это то, что окружает планету и образует некий купол, сохраняющий воздух и определённую складывавшуюся тысячелетиями среду. Именно она позволяет человечеству и всему живому дышать и существовать. Атмосфера состоит из нескольких слоёв, и в её структуру входят разные компоненты. Больше всего содержится азота (чуть меньше 78%), на втором месте кислород (порядка 20%). Количество аргона не превышает 1%, а доля углекислого газа СО2 и вовсе ничтожно мала – менее 0,2-0,3%. И такая структура должна сохраняться и оставаться постоянной.

Если же соотношение элементов меняется, то защитная оболочка Земли не выполняет свои основные функции, и это самым непосредственным образом отражается на планете.

Вредные выбросы попадают в окружающую среду ежедневно и практически постоянно, что связано со стремительными темпами развития цивилизации. Каждый стремится приобрести автомобиль, все отапливают свои жилища.

Активно развиваются разные направления промышленности, перерабатываются извлекаемые из недр Земли полезные ископаемые, становящиеся источниками энергии для улучшения качества жизни и работы предприятий. И всё это неизбежно приводит к значительному и крайне негативно влияет на экологию. Если ситуация останется прежней, это может грозить самыми серьёзными последствиями.

Основные разновидности загрязнений

Существует несколько классификаций выбросов вредных веществ в атмосферу. Так, они подразделяются на:

  • организованные
  • неорганизованные

В последнем случае вредные вещества попадают в воздух из так называемых неорганизованных и нерегламентированных источников, к которым относятся хранилища отходов и склады потенциально опасного сырья, места разгрузки и загрузки фур и товарных поездов, эстакады.

  • Низкие. Сюда относятся выделяющие газы и вредные соединения вместе с вентиляционным воздухом на невысоком уровне, часто рядом со зданиями, из которых вещества выводятся.
  • Высокие. К высоким стационарным источникам выбросов загрязняющих веществ в атмосферу относятся трубы, через которые выхлопы практически сразу проникают атмосферные слои.
  • Средние или промежуточные. Промежуточные загрязнители находятся не более чем на 15-20% выше так называемой зоны аэродинамической тени, создаваемой сооружениями.

За основу классификации может быть взята дисперсность, которая определяет проникающие способности компонентов и рассеивание выбросов в атмосфере. Этот показатель применяется для оценки загрязнителей, пребывающих в форме аэрозолей или пыли. Для последней используется разделение дисперсности на пять групп, а для аэрозольных жидкостей – на четыре категории. И чем мельче компоненты, тем более стремительными темпами они рассеиваются по воздушному бассейну.

Токсичность

Все вредные выбросы подразделяются и по токсичности, определяющей характер и степень воздействия на человеческий организм, животных и растений. Показатель определяется как величина, обратно пропорциональная дозе, которая может стать смертельной. По токсичности выделяют такие категории как:

  • малотоксичные
  • умеренно токсичные
  • высокотоксичные
  • смертельно опасные, контакты с которыми могут спровоцировать летальный исход

Нетоксичные выбросы в атмосферный воздух – это, прежде всего, различные инертные газы, которые при нормальных и стабильных условиях не оказывают воздействия, то есть остаются нейтральными. Но при изменении некоторых показателей среды, например, при повышении давления они могут действовать на человеческий мозг наркотически.

Существует и регламентированная отдельная классификация всех попадающих в воздушный бассейн токсичных соединений. Она характеризуется как предельно допустимая концентрация, и, исходя из данного показателя, выделяется четыре класса токсичности. Последний четвёртый – это малотоксичные выбросы вредных веществ. К первому же классу относятся крайне опасные вещества, контакты с которыми представляют собой серьёзную угрозу для здоровья и жизни.

Основные источники

Все источники загрязнений можно разделить на две большие категории: природные и антропогенные. Начать стоит с первой, так как она менее обширна и никак не зависит от деятельности человечества.

Выделяют следующие естественные источники:

  • Наиболее крупными природными стационарными источниками выбросов загрязняющих веществ в атмосферу являются вулканы, во время извержения которых в воздух устремляются огромные количества различных продуктов горения и мельчайших твёрдых частиц горных пород.
  • Значительную долю в составе природных источников составляют лесные, торфяные и степные пожары, бушующие в летнее время года. При сгорании дерева и прочих содержащихся в природных условиях естественных источников топлива также образуются и устремляются в воздушный бассейн вредные выбросы.
  • Различные выделения образуют животные, причём как при жизни в результате функционирования различных желез внутренней секреции, так и после смерти при разложении. Растения, имеющие пыльцу, также могут считаться источниками выбросов в окружающую среду.
  • Негативное воздействие оказывает и состоящая из мельчайших частичек пыль, поднимаемая в воздух, витающая в нём и проникающая в атмосферные слои.

Антропогенные источники

Наиболее многочисленны и опасны антропогенные источники, связанные с деятельностью человека. К ним относят:

  • Промышленные выбросы, возникающие во время работы заводов и прочих предприятий, занимающихся обрабатывающим, металлургическим или химическим производством. И в ходе некоторых процессов и реакций может сформироваться выброс радиоактивных веществ, которые особенно опасны для людей.
  • Выбросы автотранспорта, доля которых может достигать 80-90% в общем объеме всех выбросов загрязняющих веществ в атмосферу. Автотранспортом сегодня пользуются многие, и ежедневно в воздух устремляются тонны входящих в состав выхлопов вредных и опасных соединений. И если промышленные выбросы от предприятий выводятся локально, то автомобильные присутствуют практически повсеместно.
  • К стационарным источникам выбросов относятся тепловые и атомные электростанции, котельные установки. Они позволяют отапливать помещения, поэтому активно используются. Но все подобные котельные и станции являются причиной постоянных выбросов в окружающую среду.
  • Активное применение разных видов топлива, особенно горючих. Во время их сжигания образуются большие количества опасных устремляющихся в воздушный бассейн веществ.
  • Отходы. В процессе их разложения тоже происходят выбросы загрязняющих веществ в атмосферный воздух. А если учесть, что период разложения некоторых отходов превышает десятки лет, то можно представить, насколько губительно их влияние на окружающую среду. И некоторые соединения гораздо опаснее выбросов промышленных предприятий: аккумуляторы и батарейки могут содержать и выделять тяжёлые металлы.
  • Сельское хозяйство тоже провоцирует выделение выбросов загрязняющих веществ в атмосферу, образующихся при использовании удобрений, а также жизнедеятельности животных в местах их скопления. В них могут содержаться СО2, аммиак, сероводород.

Примеры конкретных соединений

Для начала стоит разобрать состав выбросов от автотранспорта в атмосферу, так как он многокомпонентный. Прежде всего, в нём содержится углекислый газ СО2, который не относится к токсичным соединениям, но, попадая в организм в высоких концентрациях, способен снижать уровень кислорода в тканях и крови. И хотя СО2 является неотъемлемой частью воздуха и выделяется во время дыхания людьми, выбросы углекислого газа при эксплуатации автомобилей гораздо более значительны.

Также в составе выхлопных газов обнаруживаются отработавшие газы, копоть и сажа, углеводороды, оксиды азота, угарный газ, альдегиды, бензапирен. Согласно результатам проводившихся измерений, количество выбросов от автотранспорта на один литр используемого бензина может достигать 14-16 кг различных газов и частиц, включая угарный газ и СО2.

От стационарных источников выбросов могут исходить самые разные вещества, такие как ангидрид, аммиак, сернистая и азотная кислоты, оксиды серы и углерода, пары ртути, мышьяк, фтористые и фосфорные соединения, свинец. Все они не просто попадают в воздух, но и могут вступать с ним или друг с другом в реакции, образуя новые компоненты. И особенно опасны промышленные выбросы в атмосферу загрязняющих веществ: замеры показывают их высокие концентрации.

Как избежать серьёзных последствий

Промышленные выбросы и другие крайне вредны, так как являются причиной выпадения кислотных осадков, ухудшения состояния здоровья людей, развития . И чтобы предотвратить опасные последствия, нужно действовать комплексно и принимать такие меры как:

  1. Установка на предприятиях очистных сооружений, введение пунктов контроля загрязнений.
  2. Переход на альтернативные, менее токсичные и негорючие источники энергии, например, воду, ветер, солнечный свет.
  3. Рациональное использование автотранспорта: своевременное устранение поломок, применение специальных снижающих концентрации вредных соединений средств, налаживание выхлопной системы. А лучше хотя бы частично переходить на троллейбусы и трамваи.
  4. Законодательное регулирование на государственном уровне.
  5. Рациональное отношение к природным ресурсам, озеленение планеты.

Вещества, попадающие в атмосферу, опасны, но некоторые из них можно устранять или предупреждать их образование.



Похожие статьи