Реферат характеристики и области применения ацетона. Применение ацетона в промышленности

Ацетон, пропанон (от лат. Acetum — уксус) — первый представитель гомологического ряда алифатических кетонов. Формула (CH 3) 2 CO.

Общая характеристика

Бесцветная летучая жидкость с характерным запахом. Неограниченно смешивается с водой и полярными органическими растворителями, также в ограниченных пропорциях смешивается с неполярными растворителями.

Ацетон является ценным промышленным растворителем и благодаря небольшой токсичности он получил широкое применение при производстве лаков, взрывчатых веществ, лекарственных средств. Он является исходным сырьем в многочисленных химических синтезах. В лабораторной практике его применяют как полярный апротонный растворитель, для приготовления охлаждающих смесей вместе с сухим льдом и аммиаком, ацетон является очень полезным для мытья химической посуды.

Ацетон является одним из продуктов метаболизма в живых организмах, в частности, у человека. Он является одним из компонентов так называемых ацетоновых тел, которых в крови здорового человека содержится крайне мало, однако при патологических состояниях (длительное голодание, тяжелая физическая нагрузка, тяжелая форма сахарного диабета) их концентрация может значительно повышаться и достигать 20 ммоль / л (кетонемия) .

В Украине ацетон, в соответствии с Постановлением Кабинета Министров от 5 декабря 2012 N 1129 «Об утверждении перечня наркотических средств, психотропных веществ и прекурсоров», является прекурсором, по которому устанавливаются меры контроля. Кроме того таким же мерам контроля подлежат вещества, содержащие не менее 50% ацетона.

Промышленное значение

Ацетон, один из самых простых и важных кетонов, впервые обнаруженный в 1595 году немецким химиком Андреасом Либавиусом при сухой перегонке ацетата свинца. Но только в 1832 году Жан-Батист Дюма и Либих точно определили его природу и состав. К 1914 году ацетон получали почти исключительно при коксовании древесины, но повышенный спрос на него во время первой мировой войны очень быстро привел к созданию новых методов производства.

Получение

Старые методы

Старейший метод промышленного производства ацетона заключался в сухой перегонке ацетата кальция, который образуется при нейтрализации известью древесного уксуса, который образуется при коксовании древесины. Сейчас этот метод уже не применяется, поскольку ацетон в этом случае содержит слишком много примесей, а исходный материал дефицитный.

Известны также способы получения ацетона путем бактериального расщепления углеводов (крахмала, сахаров, мелассы), причем в качестве побочных продуктов образуются бутиловый или этиловый спирт. Ацетон и бутиловый спирт получают в мольном соотношении от 2: 1 до 3: 1.

В Германии был разработан технологический процесс производства ацетона на основе уксусной кислоты. При 400 ° С через контакты с церия пропускали уксусную кислоту:

Такой ацетон отличается особой чистотой.

Ацетон также производят из ацетилена прямым синтезом:

Ацетилен вступает во взаимодействие с водяным паром при 450 ° С в присутствии катализаторов (в частности оксида цинка или композита Fe 2 O 3 -ZnO).

Получение из изопропилового спирта

Одним из главных методов получения ацетона является дегидрогенизация изопропилового спирта:

Дегидрогенизация протекает при 350-400 ° С в присутствии таких катализаторов, как сплав железо-медь-цинк, оксид цинка или оксид цинка с 4,5% карбоната натрия, медь, свинец и другие. Вследствие эндотермической характера реакции процесс ведут в трубчатом реакторе, узкие длинные трубки которого обогреваются дымовыми газами. Производительность процесса возрастает при повышении давления (около 2,7-3,4 атмосферы).

Активность катализатора постепенно снижается из-за отложения на его поверхности сажи и смолистых веществ. Регенерация катализатора заключается в обжиге углеродных отложений кислородом, разбавленным инертными газами.

В последнее время все чаще ацетон получают путем окисления изопропилового спирта воздухом. При этом также образуется перекись водорода:

Этот метод играет определенную роль при производстве глицерина при отсутствии хлора. В качестве катализатора при проведении процесса применяют серебро, медь, никель, платину и другие.

В этом процессе воздух, насыщенный парами изопропилового спирта, пропускается над тонким слоем катализатора при температуре 400-650 ° C. Продукты реакции быстро охлаждают, и конденсат после нейтрализации небольших количеств уксусной кислоты дистиллированных. Выделенный технический ацетон ректификують, а непрореагировавшего изопропиловый спирт возвращают на окисление.

Реакция окисления изопропилового спирта сильно экзотермическая и ее трудно контролировать. Поэтому рекомендуется в одной реакции объединять и окисления, и дегидрогенизации, для того чтобы суммарный тепловой эффект приближался к нулю.

Метод прямого окисления пропилена

Разработана и внедрена в промышленности технология прямого синтеза ацетальдегида из этилена

может также служить для непосредственного получения ацетона из пропилена. В этом случае пропилен (или богатая пропиленом смесь газов) под действием раствора катализатора и в хлоридной кислоте превращается в ацетон. Восстановленный катализатор снова окисляется воздухом. При этом протекают следующие реакции:

Выход составляет 92-94% при 90-120 ° С и давлении 9-12 кгс / см². В качестве побочных продуктов образуются 0,5-1,5% пропионового альдегида (пропаналя) и ~ 2% моно- и дихлороацетонив. Предполагают, что реакция идет через комплекс -, который в присутствии воды гидролитически расщепляется на ацетон, палладий и хлорную кислоту. Агентами повторного окисления будут CuCl 2 или FeCl 3, а также смеси обоих соединений.

Реакцию можно проводить при комнатной температуре, но повышенные температуры ускоряют процесс. В большинстве случаев рН раствора составляет от 3 до 4. Давление также благоприятно влияет на ход реакции. Обычно работают с очень разбавленным раствором PdCl 2 (частично вместе с ацетатом меди). Использование концентрированного раствора ускоряет реакцию.

Модифицированные катализаторы акролеина применяются и при прямом окислении пропилена в ацетон. Катализаторы на основе MoO 3 или Bi 2 O 3 в присутствии H 3 PO 4 или H 3 BO 3 при 375 ° С дают рядом с ацетальдегидом, уксусной кислотой, формальдегидом, этилацетат и акролеин также и ацетон, причем положительного влияния оказывает добавление серебра. Можно использовать фосфоромолибдат висмута на Al 2 O 3 и фосфоромолибденову кислоту на SiO 2 (260 ° С, 1 с).

Кумол-гидропероксидний способ

Этот способ также является одним из основных промышленных способов получения ацетона, он на 40% дешевле метода получения ацетона с изопропилового спирта. Исходными продуктами служат бензол и пропилен.

Алкилирования бензола пропиленом осуществляют в присутствии катализатора хлорида алюминия при температуре 50 ° С. В качестве катализаторов использовали также концентрированную серную кислоту, фтороводорода, фторид бора и другие.

Окисление кумола проводится кислородом воздуха при 4-5 атмосферах и 110-120 ° С, при этом образуется гидропероксид кумола.

Гидропероксид кумола при температуре 30-60 ° С в присутствии примерно 0,1% серной кислоты разлагается на фенол и ацетон:

Другие методы

Ацетон можно получить каталитическим расписанию паров уксусной кислоты при повышенной температуре (400-450 ° С). Катализаторы — карбонат кальция или бария, оксиды кальция, алюминия, тория, урана, цинка, соли марганца и другие.

Другим известным методом является каталитическая дегидрогенизация паров этанола при температуре 450-500 ° С. Катализаторами процесса является оксид железа, активированный известь и другие.

Возможно образование ацетона при каталитическом окислении пропана кислородом воздуха при температуре 400 ° C:

Химические свойства

Ацетон обладает типичными химическими свойствами кетонов. Он тяжело окисляется, каталитически восстанавливается до изопропилового спирта. При восстановлении ацетона щелочными реагентами и особенно амальгама магния или цинка происходит конденсация и восстановления, завершаются образованием пинакон:

Ацетон окисляет вторичные спирты в кетоны в присутствии трет -бутилату алюминия (реакция Опенауера)

При использовании большого избытка ацетона реакция сдвигается вправо.

Под действием перекиси водорода на ацетон в кислой среде образуется перекись ацетона. Хромовый ангидрид окисляет ацетон до углекислого газа и воды.

Ацетон вступает в различные реакции конденсации. При альдольно конденсации происходит образование диацетонового спирта, применяют как растворитель:

При кротонов конденсации последовательно образуются оксид мезитилу, а затем Форон. Оксид мезитилу применяют для снижения летучести растворителей для лакокрасочных покрытий.

При конденсации трех молекул ацетона под действием концентрированной серной или соляной кислоты образуется симметричный триметилбензол (мезитилен):


При конденсации с ацетиленом ацетон образует диметилкарбинол, который легко превращается в изопрен:

При конденсации ацетона с формальдегидом в присутствии небольших количеств щелочей образуется ацетоспирт, который при действии йода или кислот при нагревании легко отщепляет воду, переходя в метилвинилкетон:

При конденсации уксусноэтиловый эфира с ацетоном получают ацетилацетон:

Одной из важнейших реакций ацетона является присоединение к нему синильной кислоты, в результате чего образуется ацетонциангидрин:


Ацетон реагирует с аммиаком и водородом в присутствии никеля или меди, образуя амины:

Обычно реакция проходит при температуре 125-175 ° С и давлении 5-10 атмосфер.

При воздействии на ацетон металлического натрия или амида натрия образуется ацетоннатрий — натриевый алкоголят изопропенилового спирта:

При пиролизе ацетона (500-700 ° С) над глиноземом или на раскаленной электрическим током платиновом проводе в специальном приборе — кетенний лампе, образуется самый кетен:

В присутствии щелочей ацетон легко реагирует с галоида с образованием хлороформа, йодоформа и бромоформа:

Ацетон также присоединяет хлороформ, образуя хлорэтона, который применяется как антисептик:


Ацетон также вступает с аммиаком в реакцию Манниха с образованием 2,2 ‘, 6,6’-тетраметилпиперидону-4 с приемлемыми выходами.

Применение

Ацетон — очень хороший растворитель жиров, масел, многих смол, нитролаков, сургуча, канифоли. Ацетон также растворяет целлулоид, нитро и ацетилцеллюлозу. Каучук, пек и мастичные смолы не растворяются в ацетоне.

Благодаря своей малой токсичности, хорошей растворимой способности ацетон очень широко применяется на предприятиях химической чистки.

При конденсации ацетона в щелочной среде можно получить различные продукты. При температуре 10-20 ° С в метанольного растворе ацетон димеризуеться в присутствии небольших количеств щелочи в диацетоновый спирт, из которого получают гексиленгликоль, оксид мезитилу, метилизобутилкарбинол, метилизобутилкетон, метиловый эфир гексиленгликоль.

Гексиленгликоль добавляется преимущественно к топливу. Оксид мезитилу способен вступать в различные реакции присоединения, например с метанолом в присутствии небольших количеств щелочи. Метилизобутилкетон — очень важный растворитель. Метилизобутилкетон и метилизобутилкарбинол очень хорошие растворителями для поливинилхлорида, сополимеров винилхлорида, производных целлюлозы, хлорированного каучука и других веществ. В большинстве случаев за растворимыми способностями они превосходят эфиры.

При каталитической конденсации ацетона в присутствии оснований при 200 ° С наряду с так называемыми изоциклитонамы образуется изофорон, который также является основой для различных синтезов. Сам изофорон занимает исключительное положение как растворитель виниловых лаков. Он предоставляет лакам горячей сушки блеска и прочности. При осторожном гидрировании с изофорон получают 3,3,5-триметилциклогексанон, который применяется на получение перекисей и служит растворителем. 3,3,5-триметилциклогексанол, который образуется в результате полной гидрогенизации изофорон, является важным компонентом специальных пластификаторов, особенно во взаимодействии с длинноцепочечных алифатических моно- и дикарбоновых кислотами. Но еще большее значение придают продукту его окисления азотной кислотой — α, α, γ-триметиладипиновий кислоте. Эту кислоту етерефикують в специальные пластификаторы и превращают через диметиловый эфир в 2,2,4-триметилгександиол-1, 6 путем энергичной гидрогенизации. Кроме того, кислоту можно превратить гидрогенизацией динитрила в 2,2,4-триметилгексаметилендиамин.

Другой путь получения диамина с изофорон заключается в воздействии на него синильной кислоты и образовании нитрила изофорон — 3,3,5-триметил-5-цианоциклогексанону, который при специальных условиях можно восстановить в 1-аминометил-1,3,3-триметил-5 -аминоциклогексан (изофорондиамин).

Диамины легко перевести в диизоцианата и дальше использовать как отвердители эпоксидных смол. Особенно велика их роль для изготовления прозрачных полиамидов. Полиамиды применяются для изготовления смол, связных компонентов лаков, клеев, высококачественных пластмасс.

Патофизиологический влияние

Общий характер действия

Наркотик, последовательно поражает все отделы центральной нервной системы. При вдыхании в течение длительного времени накапливается в организме. Токсический эффект зависит не только от концентрации, но и от времени действия. Медленное выделение из организма увеличивает возможности хронического отравления. Подавляет некоторые митохондриальные (окислительные) ферменты.

Влияние на животных

При остром отравлении в белых мышей боковое положение после 2-часовой экспозиции наступает при 30-40 мг / л; смерть — при 150 мг / л. В белых крыс боковое положение при 2-часовом воздействии 30 мг / л. Концентрации до 10 мг / л не оказывает влияния даже через 8:00. Первые признаки отравления установлены при 25 мг / л через 1,5-3 часа. При 50 мг / л рефлексы исчезают через 2-2,5 часа. В морских свинок и кроликов боковое положение наступало при 2-часовом воздействии 72 мг / л. Минимальные концентрации, изменяющие безумовнорефлекторну деятельность кроликов, 1,25-2,5 мг / л. У мышей, крыс, морских свинок и кроликов концентрации ацетона, вызвавшие боковое положение, приводили к увеличению содержания ацетона, ацетоуксусной и особенно β-оксимасляной кислоты в крови и моче. У кошек вдыхание 8-10 мг / л в течение 5:00 вызывает только раздражение слизистых оболочек носа и глаз, сонливость. У собак при 5-6 мг / л и экспозиции 7:00 условные рефлексы не изменяются.

При исследованиях хронического отравления белым крысам давали вдыхать 0,00053 мг / л ацетона непрерывно в течение 45 суток или 0,2 мг / л в день по 8:00. В результате не было обнаружено существенных признаков отравления. Влияние 0,019 мг / л по 4:00 в день в течение 3 недель не изменило условнорефлекторной деятельности. Животные выдерживали действие ацетона в течение 9 дней при концентрации в крови 100 мг% и не проявляли никаких признаков отравления, если не учитывать некоторой сонливости. При 250 мг% ацетона в крови — слабость и расстройство координации движений. У мышей и кроликов при ежедневных 4-часовых отравлениях концентрацией 8 мг / л в течение более 3 месяцев развивалось повышение чувствительности к ацетона с ухудшением общего состояния. По другим данным, наоборот, при вдыхании в течение 40 минут 1-2 раза в неделю растущих с 1 до 4 мг / л концентраций наблюдалось «привыкания». Содержание ацетона в крови «привыкших» животных при одной и той же концентрации в воздухе был ниже, чем у тех, которые впервые его вдыхали. У кошек повторное отравление 3-5 мг / л — вызвало лишь раздражение слизистых оболочек.

Воздействие на человека

Порог восприятия запаха составляет 0,0011 мг / л, порог действия, влечет возникновение електрокортикального условного рефлекса, 0,44 мг / л. При вдыхании 1,2 мг / л в течение 3-5 минут происходит раздражение слизистых оболочек глаз, носа и горла, а вдыхание 0,01 мг / л в течение 6:00 повышало активность холинэстеразы крови и коэффициент использования кислорода. Увеличение содержания в крови кетоновых тел происходило и при воздействии 0,001 мг / л; в моче содержание кетоновых тел не менялся.

В случае острого отравления, у пострадавшего содержание ацетона в крови на второй день достигал 18 мг% (норма 1-2 мг%). Ацетон был обнаружен также и в моче; через некоторое время в моче обнаруживали небольшое количество белка, лейкоциты и эритроциты. Уровень сахара в крови в день отравления достигал 142 мг%.

При одновременном содержании в воздухе 2,3-3 мг / л ацетона и бутанон отмечены случаи обмороков у работниц. При применении в качестве растворителя ацетона вместе с бутанон описанное отравления нескольких рабочих (недомогание, слезотечение, непродолжительная потеря сознания, сопровождавшаяся судорогами, головная боль). Массовое острое заболевание глаз у рабочих обувной фабрики (светобоязнь, слезотечение, конъюнктивит и даже расстройство зрения) было вызвано ацетонистим спиртом и зависело, очевидно, не столько от ацетона, сколько от метилового и аллилового спиртов. Аналогичные заболевания объяснялись загрязнением ацетона ацетальдегидом.

По наблюдениям в ходе исследований хронических отравлений при концентрации 0,1-0,12 мг / л ацетона в рабочих не наблюдалось никаких признаков отравления, хотя в моче он постоянно определялся; при 0,5-1 мг / л ацетон в крови не определялся в течение недели. Концентрация 5 мг / л в воздухе при ежедневном воздействии вызвала возникновение в крови до 40 мг% ацетона. При наличии ~ 0,6 мг / л ацетона в воздухе (в присутствии бутилацетата и этилового спирта) отмечались признаки отравления. Наблюдались изменения со стороны верхних дыхательных путей, чаще в форме атрофических катаров, анемия, сдвиг влево лейкоцитарной формулы, снижение аппетита. В некоторых рабочих в сыворотке крови было выявлено снижение уровня альбуминов и повышение уровня α-, β- и γ-глобулинов, а также общих липидва, без других симптомов интоксикации.

Воздействие на кожу

При погружении уши кролика в ацетон на 3:00 или при нанесении чистого ацетона на выстриженный кожу живота на 6:00 местного действия почти незаметно. При наложении компрессов из ацетона обнаружены изменения в периферической нервной системе, наиболее чувствительными оказываются мозговые нервные волокна.

Компрессы из ацетона, наложенные человеку на плечо в сутки, вызвали незначительное покраснение, которое вскоре исчезало. В рабочих на участках кожи, на которые в течение рабочего дня действовал ацетон, уменьшался pH и количество холестерина, подавлялась функция сальных желез.

Попадание в организм и поведение в нем

Жидкий ацетон может всасываться через кожу. Ацетон появляется в крови сразу после начала вдыхания его концентрация постепенно нарастает к установлению динамического равновесия. Содержание в тканях составляет следующий ряд: головной мозг → селезенка → печень → поджелудочная железа → почки → легкие → мышцы → сердце. Меченый углерод, входящий в молекулу ацетона, обнаруженный в составе гликогена, мочи, холестерина, жирных и аминокислот. Ацетон метаболизируется полнее при вдыхании невысоких концентраций. С выдыхаемым воздухом, выделяется неизмененный ацетон, а при его окислении образуется. Ацетон выделяется также через почки и кожу.

«Анализ на ацетон»

Ацетон, ацетоуксусная и бетаоксимасляна кислота, объединяются под общим названием кетоновые тела. Это продукты неполного окисления жиров и частично белков, тесно связаны между собой.

При нормальном состоянии организма кетоновые тела в общем анализе мочи отсутствуют. Следует отметить, что за сутки с мочой таки выделяется незначительное количество этих соединений, однако такие концентрации не могут быть определены обычными методами, которые применяются в лабораториях. Поэтому принято считать, что в норме в моче ацетоновых тел нет.

Кетоновые тела оказываются в общем анализе мочи при нарушении обмена углеводов и жиров. Такое нарушение сопровождается увеличением количества ацетоновых тел в тканях в крови (кетонемия). Содержание в моче ацетоновых тел называется кетонурии.

При нормальных условиях организм черпает энергию в основном из глюкозы. Глюкоза накапливается в организме, в первую очередь в печени в виде гликогена. Гликоген образует энергетический резерв, который можно быстро мобилизовать при необходимости компенсации внезапной нехватки глюкозы.

При физических и эмоциональных нагрузках, при болезнях с повышенной температурой и других повышенных затратах энергии запасы гликогена исчерпываются, организм начинает получать энергию из запасов жира. При распаде жира образуются кетоновые тела, которые выводятся с мочой. Если с ацетоновая телами в общем анализе мочи обнаруживается глюкоза, то это признак сахарного диабета. Также кетоновые тела в общем анализе мочи появляются вследствие обезвоживания организма, при резком похудении, лихорадке, голодании, тяжелых отравлениях с сильной рвотой и поносом.

Видео по теме

Произведём «разбор полётов, с колокольни» физико - химических фактов по поводу применения ацетона, как по назначению, так и не очень. Об основных свойства ацетона знают, наверное, и дети в первом классе, поэтому не будем углубляется в подробности. Основное бытовое применение данного органического вещества - это растворитель. Под словом растворитель подразумевается способность ацетона растворять приличное количество органических веществ, что и делает его универсальным в применении, в отличии от узконаправленных растворителей, таких как, толуол, бензол, керосин и т.д. Надо не забывать о большой испаряющейся способности ацетона (прошу не путать с температурой кипения), например, изопропиловый и этиловый спирты имеют почти одинаковую температуру кипения, разница в пять градусов, но этиловый спирт быстрее испариться чем изопропиловый, при прочих одинаковых условиях.

Но какой бы идеальный растворитель не был ацетон, он не является основой законченного продукта, если конечно не брать клей для склеивания моделей самолётов, кораблей и т.д. изготовленных из полистирола! Помните в СССР продавали такие наборы, «очумелые ручки». Во всём остальном он идёт как добавка. Даже лак для ногтей, которые модницы потом якобы снимают ацетоном, тоже не ацетон. В лаковой основе в качестве растворителя, а также жидкость для снятия лака используют этилацетат, с небольшим, до 10% добавлением ацетона. Ацетон вреден не только для печени при вдыхании, но и для ногтей, и это как раз из - за его хорошей растворимости почти ко всем веществам, особенно протолитического характера.

Ацетон и двигатель

Ацетон, как для органического вещества является довольно реакционно способным, и вступает в ряд химических реакций. Но не целевое применение может привести к плачевным результатам. Как уже упоминалось лак с ногтей смывать им не надо. В лакокрасочные составы его добавляют исключительно для уменьшения вязкости краски и сокращения срока высыхания. Заливать его в бак автомобиля и заводить мотор якобы для прочистки системы не стоит. Топливную систему он конечно прочисти, но и мотор «уложить» может. Этим способом пользовались в 80-е года, когда не было альтернативы. Но вот если Вы занимаетесь авиамодельным или другим видом спорта где присутствует мини двигатель внутреннего сгорания со свечой зажигания, то 10 - 15 % ацетона в смесь топлива увеличит мощность двигателя. Тоже самое можно сказать о повышении октана ацетоном. Может на атмосфернике и пройдёт данный финт, но турбированный мотор с инжекторами Вам спасибо за такое не скажет. Смело можно использовать чистый ацетон если работаете с пенопластом или полистиролом, очень хорошо клеит данный вид материала. Хранить ацетон лучше в тёмном стекле или полиэтиленовой канистре, но в тёмном месте. Ультрафиолетовое излучение от Солнца приводит к образованию взрывчатых пироксидных соединений. Которые самопроизвольно могут взорваться.

Ацетон - это один из самых наиболее распространенных растворителей в строительстве. Его используют для разбавления, прежде всего ацетатов и нитратов, благодаря довольно небольшому уровню токсичности он также используется в пищевой и фармацевтической промышленности. Ацетон также является сырьём для синтеза ангидрида уксуса, метилметакрилата, изофрона, метилизобутилкетона, окиси, кетена, мезитила, диацетонового спирта и прочих соединений.

Ацетон - это летучее и бесцветное вещество. Оно представляет собой гигроскопическую жидкость с характерным ярко выраженным запахом. Она может также смешиваться с этанолом, хлороформом, метанолом, водой, диэтиловым спиртом и прочими органическими растворителями в самых разных соотношениях и пропорциях.

Этому химическому веществу характерны такие же качества и особенности, как и алифатическими кетонам. Он может каталитически восстанавливаться амальгамами цинка и магния до изопропилового спирта. Ацетон также может окислять до кетонов вторичные спирты при отсутствии алкоголятов алюминия.

Его основные технические особенности и характеристики:

Плотность - 790, 8 кг/м3;

Температура плавления - 94,90 С;

Температура кипения - 56,20 С.

В условиях и масштабах промышленности, это вещество выделяется при производстве уксусной кислоты, киноплёнки, оргстекла, лаков, пластмасс и красок.

С точки зрения медицины, ацетон - это самый настоящий наркотик. Его части используют токсикоманы для того, чтоб достичь состояния эйфории. Однако это вещество очень опасно и может поражать всю центральную нервную систему.

Отравление организма может наступить в случае попадания данного вещества внутрь при вдыхании его концентрированных паров. Смертельная доза составляет от 60 мл и больше. При попадании ацетона внутрь организма могут наблюдаться такие симптомы как боли в животе, цианоз кожи, рвота, тошнота. В случае попадания большого количества в организм может наступить потеря сознания, и смерть наступает приблизительно через 7 - 12 часов после приёма этого вещества.

Сегодня ацетон является одним из наиболее востребованных продуктов, который активно используется при производстве и изготовлении лакокрасочных материалов, в малярных работах, строительстве, в химической промышленности, а также в качестве эффективного и недорогого растворителя красок и прочих веществ.

С каждым днём всё большее значение приобретает его использование для удаления воска из смазочных масел, для обезжиривания шерсти и меха, в производстве искусственной кожи, а также для эффективного извлечения различных эфирных масел. Ко всему прочему, ацетон активно используется при наполнении баллонов для того, чтоб хранить ацетилен. Один объём этого вещества растворяет примерно 25 объёмов ацетилена при условии нормального давления и температуры.

Хранить это вещество необходимо в стеклянных, пластиковых или металлических флаконах в местах, которые надёжно защищены от попадания искр или солнечного света. Помещения для хранения ацетона должны также хорошо проветриваться и вентилироваться. К тому же нужно следить за тем, чтоб ацетон не был доступен маленьким детям.

АЦЕТОН , диметилкетон , химический состав СН 3 ·СО·СН 3 , простейший представитель группы кетонов; играет очень важную роль в различных отраслях химической промышленности, где применяется или в качестве растворителя, или как исходный материал для приготовления ценных химических веществ. Известен с 1732 г. как продукт сухой перегонки солей уксусной кислоты и прежде назывался пироуксусным эфиром (Pyroessigather). Его состав впервые определен Либихом и Дюма (в 1832 г.), а Вильямсон установил настоящую формулу строения, которая позднее была подтверждена синтезом ацетона из цинкметила и хлористого ацетила. Первое производство ацетона было осуществлено в Австрии, которая до 90-х годов 19 в. была его главным поставщиком. В последнее время, в связи с возрастающей потребностью в ацетоне и разработкой новых дешевых способов его получения, производство ацетона прочно утвердилось во Франции, Англии и США.

Физические и химические свойства ацетона . Бесцветная легко подвижная жидкость с запахом, слегка напоминающим запах мяты, температура кипения при 760 мм 56°,2; температура плавления - 94°,9; температура вспышки 18°; температура критическая 232°,6; давление критическое 522 atm; удельный вес (при 15°) 0,79726; скрытая теплота испарения для 1 кг 125,28 Cal (при 56°,2).

Ацетон не только легко смешивается в любом соотношении с водой, спиртом, эфиром, бензином и многими другими органическими растворителями, но, будучи прибавлен к двум не смешивающимся между собой растворителям, переводит их в состояние однородного раствора. С другой стороны, ацетон является превосходным растворителем для смол, жиров, дубильных кислот и других органических соединений.

В химическом отношении ацетон представляет собой кетон, поэтому он присоединяет кислые соли сернистой кислоты, аммиак; с гидроксиламином образует оксим, с гидразинами - гидразоны; при восстановлении превращается во вторичный спирт - изопропиловый алкоголь (СН 3) 2 СН·ОН. Под влиянием определенных катализаторов ацетон конденсируется, давая различные продукты уплотнения (форон, окись мезитила и т. д.). Металлическим натрием в водном растворе восстанавливается в двуатомный спирт - пинакон (СН 3) 2 ·С(ОН)·С(ОН)·(СН 3) 2 , который в последнее время нашел себе применение как исходный продукт для получения синтетического каучука. При действии галоидов - хлора или йода - в присутствии растворов едких щелочей ацетон превращается в хлороформ или йодоформ (чувствительная реакция на ацетон при условии отсутствия этилового спирта).

Получение ацетона . Среди различных способов получения ацетона техническое значение имеют: 1) методы, основанные на переработке продуктов сухой перегонки дерева, 2) ацетоновое брожение углеводов и 3) синтетические методы.

1) В сыром древесном спирте, в том виде, как он получается при сухой перегонке дерева, всегда находится ацетон, количество которого колеблется в некоторых пределах, в зависимости от породы дерева, условий ведения сухой перегонки и т. д.; в среднем содержание его составляет 10-20% от веса спирта. При дистилляции этого спирта-сырца в колонных аппаратах получаются первые погоны, содержащие около 50% ацетона. Из этих погонов повторными перегонками выделяют фракции; еще более богатые ацетоном, которые, однако, не представляют собой чистого ацетона, т. к. содержат в качестве примесей вещества, которые обладают температурой кипения, близкой к ацетону (метиловый эфир уксусной кислоты), и которые поэтому невозможно отделить от ацетона дистилляцией; следовательно, для таких производств, где требуется ацетон большой чистоты (например, приготовление пироксилина, кордита и т. п.), этот продукт не годится. Самым старым, но еще до сих пор пользующимся наибольшим распространением является способ получения ацетона, основанный на термическом разложении уксуснокислого кальция, т. н. «уксусного порошка» - продукта сухой перегонки дерева, получающегося при нейтрализации уксусной кислоты известью. Процесс образования ацетона выражается уравнением (СН 3 СОО) 2 Са = СН 3 СОСН 3 + СаСО 3 , и протекает при температуре около 400°. Т. к. технический уксуснокислый кальций - уксусный порошок - содержит в лучшем случае 80% чистой уксуснокальциевой соли, то из 100 его весовых частей теоретически должно было бы получиться 30 весовых частей ацетона. На практике, однако, выход ацетона бывает значительно ниже вследствие целого ряда побочных процессов, протекающих наряду с основной реакцией. Вместе с ацетоном образуются высшие кетоны (метилэтилкетон СН 3 ·СО·С 2 Н 5), альдегиды, кислоты, газообразные продукты (метан) и смолы. Поэтому выход ацетона почти никогда не превышает 20-21% от веса уксусного порошка (80%-го).

При нагревании порошка в заводских аппаратах перегонка начинается при 110-125°. Сначала перегоняется вода, находящаяся в уксусном порошке, затем вода с небольшим содержанием ацетона, наконец, наступает небольшой перерыв в дистилляции, после которого начинается собственно разложение уксуснокислого кальция. При этом меняется цвет и удельный вес погона, и начинается обильное выделение газа. Перегонку продолжают почти до полного прекращения образования жидкого погона. После этого в реторту, в которой ведется разложение, пропускают пар для полного удаления ацетона. Одной из наиболее старых конструкций аппаратов для заводского получения ацетона из уксусного порошка является железная или чугунная плоская реторта, снабженная крышкой, в которой имеются три отверстия: первое служит для загрузки порошка, другое соединено с отводной трубой, пылеуловителем и холодильником, в третье вставлена мешалка. Назначение пылеуловителя - удерживать мелкую пыль, образующуюся при перемешивании порошка. Несмотря на присутствие пылеуловителя, уксусный порошок вследствие своей легкости распространяется по помещению и засоряет дистиллят. Кроме того, при непосредственном соприкосновении порошка с раскаленными стенками и дном реторты всегда происходит б. или м. сильное его пригорание, отчего выход ацетона в аппаратах этого типа бывает на 10-12% ниже, чем в аппаратах новых конструкций, где порошок нагревается лучистой теплотой.

Достигается это тем, что порошок тонким слоем раскладывают на полки, помещенные на вагонетке. Вагонетка на рельсах вкатывается в горизонтальную реторту, которая со всех сторон равномерно обогревается топочными газами. Дистилляция продолжается 10-24 ч. По окончании ее в реторту пропускают пар для разложения остатков уксуснокислого кальция и для удаления ацетона, после чего вагонетку заменяют новой. Этим путем достигается непрерывность процесса. Выход ацетона составляет около 70% теоретического.

Кроме этих двух типов аппаратов в технике применяют еще третий, отличающийся от них тем, что нагревание порошка происходит при помощи перегретого пара. В этом случае устраняется всякая возможность местного перегрева, но получающийся ацетон сильно, разбавлен водой (10%-ный вместо 30-40%-ного), что экономически не представляется выгодным, т. к. некоторый выигрыш в выходе целиком покрывается расходами, связанными с затратой тепла на концентрирование водных растворов ацетона. Полученный по одному из этих способов ацетон представляет собой жидкость, разделяющуюся на два слоя: нижний – светло-желтый, в нем преобладает ацетон, и верхний - маслянистый, темно-бурый, состоящий из высших кетонов, смолистых веществ, углеводородов, фенолов и других продуктов. Для очистки ацетона сырец обрабатывают водой в особых барабанах с мешалками. Выделившиеся при этом маслянистые, окрашенные в темный цвет вещества отделяют, а водный раствор ацетона нейтрализуют известью и подвергают ректификации в колонных аппаратах. Первый погон собирают в температурных пределах 54-60° - это технически чистый ацетон (97%); второй переходит между 60-85° - жидкость, при смешении с водой выделяющая трудно растворимые в воде высшие кетоны; третий - смесь воды и желтого масла. После дальнейшей обработки и ректификации первый погон дает химически чистый ацетон, второй - продукт, кипящий при температуре от 70 до 120°, в главной своей части состоящий из метилэтилкетона и называемый белым ацетоновым маслом; из третьего получается желтое ацетоновое масло с температурой кипения от 120 до 250°.

2) Первое наблюдение над образованием ацетона из углеводов в результате ферментативного процесса (при участии Bacillus macerans) было сделано в 1905 г. Шардингером. Целым рядом исследовательских работ, из которых особенного внимания заслуживают исследования Фернбаха в Институте Пастера, было обнаружено, что под влиянием определенных видов микроорганизмов (Bacillus butylicus В. F., Granulobacter pectinovorum, В. acetoaethylicus) крахмал превращается в ацетон и бутиловый спирт. Практическое применение брожения для получения ацетона начинается с 1912 г. (Фернбах и Стрэндж, Г. П. 323533). В начале империалистической войны этим способом заинтересовалось английское правительство, нуждавшееся в больших количествах ацетона для приготовления особого вида бездымного пороха (кордита). Затем, в конце войны, способ брожения начали применять в США, где в настоящее время он достиг большой степени совершенства и получил преобладающее значение. В качестве исходного материала для получения ацетона могут служить различные виды злаков, картофель и многие другие вещества, содержащие крахмал. На практике, однако, почти всегда пользуются кукурузой, т. к. она содержит достаточное количество азотистых соединений, необходимых для успешного протекания процесса.

По одному из существующих способов получение ацетона ведется следующим образом. После освобождения кукурузы от шелухи ее размалывают и муку размешивают в особых аппаратах с горячей водой (на 1 ч. муки берут 10 ч. воды), отчего содержащийся в муке крахмал переходит в мелкодисперсное состояние и частично гидролизуется; этим же достигается стерилизация массы. Затем стерилизованную смесь перекачивают в бродильные чаны и после охлаждения прибавляют чистую культуру Granulobacter pectinovorum. Бродильные чаны снабжены гидравлическими затворами, через которые свободно выходят образующиеся при процессе газы, состоящие из окиси углерода (60%) и водорода (40%). Во время брожения строго соблюдают стерильные условия и поддерживают t° в 30-35°. По окончании брожения полученные продукты (ацетон, этиловый и бутиловый спирт) разделяются дистилляцией в колонных аппаратах. Первым перегоняется ацетон, вторым - этиловый спирт, а затем - смесь бутилового спирта и воды, содержащая около 68% бутилового спирта. Из такого погона дальнейшей обработкой получают чистый бутиловый спирт. При этом из 1 бушеля (36,4 л) зерна получается 4,319 кг полезного продукта, состоящего из 60% ацетона, 30% этилового и 10% бутилового спирта.

3) Синтетический ацетон может быть получен двумя путями: а) контактным - из окиси углерода и водорода (водяного газа) и б) из карбида кальция - через ацетилен, ацетальдегид и уксусную кислоту.

Контактный способ является наиболее молодым из всех существующих способов добывания ацетона. Он возник в связи с осуществлением синтеза метанола. Ацетон получается, наряду с высшими кетонами, альдегидами и другими соединениями, при определенном изменении условий ведения синтеза метилового спирта из водяного газа; от примесей ацетон отделяется фракционированием. Т. о. ацетон является здесь побочным продуктом; относительно его выхода точных сведений не имеется, но, судя по некоторым данным, выход не м. б. большим.

Относительно промежуточных стадий получения ацетона из карбида кальция см. Ацетилен , Ацетальдегид , Уксусная кислота. Из последней ацетон может быть получен контактным путем - при пропускании паров уксусной кислоты через карбонат или ацетат бария или иной катализатор. При этом, однако, полного превращения не происходит: некоторая часть уксусной кислоты проходит неизмененной и требует дополнительной обработки. Это обстоятельство и имеющее место в качестве побочной реакции образование этана являются большим затруднением на пути промышленного осуществления этого способа. Из всех описанных приемов добывания ацетона экономически наиболее выгодным является брожение: здесь не требуется сложной аппаратуры, затраты на оборудование сравнительно невелики и применяется дешевое сырье. Преимущества способа брожения настолько значительны, что, например, в США, несмотря на сильно развитую промышленность сухой перегонки дерева, ацетон почти исключительно получается брожением. По последним американским данным, себестоимость ацетона не превышает себестоимости этилового спирта.

Применение ацетона . Большая часть ацетона служит для растворения и желатинизации нитроклетчатки с целью приготовления из нее бездымного пороха и целлулоида. Нитроклетчатка в небольшом количестве ацетона набухает и превращается в студенистую массу, которая легко вальцуется и формуется и потому особенно пригодна для различных поделок. Ее растворы в ацетоне применяются также в качестве клея. В виду того, что ацетон - хороший растворитель для жиров, смол, дубильных кислот и др. органических веществ, им широко пользуются для экстракции этих веществ из растительных продуктов. Довольно много ацетона идет для приготовления автогаза, получаемого растворением ацетилена в ацетоне. Продукты соединения ацетона с солями сернистой и гидросернистой кислот находят широкое применение в фотографии, в печатании и крашении тканей в качестве проявителей и восстановителей. Многие искусственные смолы и пластические массы получаются конденсацией ацетона с казеином и формалином. Ацетон находит также применение в лакокрасочном производстве; кроме того служит исходным материалом для приготовления ряда ценных органических продуктов: хлороформа, йодоформа, сульфонала, ионона, синтетического индиго, изопрена и пинакона; два последних, в свою очередь, являются исходными веществами для приготовления синтетического каучука.

Простейший представитель кетонов. Бесцветная легкоподвижная летучая жидкость с резким характерным запахом. Он полностью смешивается с водой и большинством органических растворителей. Ацетон хорошо растворяет многие органические вещества (ацетилцеллюлозу и нитроцеллюлозу, жиры, воск, резину и др.), а также ряд солей (хлорид кальция, иодид калия). Является одним из метаболитов, производимых человеческим организмом.

Применение ацетона :

При синтезе поликарбонатов, полиуретанов и эпоксидных смол;

В производстве лаков;

В производстве взрывчатых веществ;

В производстве лекарственных препаратов;

В составе клея для киноплёнок как растворитель ацетата целлюлозы;

Компонент для очистки поверхностей в различных производственных процессах;

Широко используется для хранения ацетилена, который не может храниться под давлением в чистом виде из-за опасности взрыва (для этого используют ёмкости с пористым материалом, пропитанные ацетоном. 1 литр ацетона растворяет до 250 литров ацетилена).

Опасность для человека:

Опасность при разовом воздействии высоких концентраций ацетона.Пар раздражает глаза и дыхательные пути. Вещество может оказывать действие на центральную нервную систему, печень, почки, желудочно-кишечный тракт. Вещество может всасываться в организм при вдыхании и через кожу. Длительный контакт с кожей может вызвать дерматит. Вещество может оказывать действие на кровь и костный мозг. Из за высокой токсичности в Европе вместо ацетона, чаще применяют метилэтилкетон.

Пожарная опасность:

Сильно огнеопасно. Ацетон относят к класу 3,1 ЛВЖ с температурой вспышки менее +23 град.С. Не допускать открытого огня, искр и курения. Смесь паров ацетона с воздухом взрывоопасна. Опасное загрязнение воздуха будет достигаться довольно быстро при испарении этого вещества при 20°C. При распылении - еще быстрее. Пар тяжелее воздуха и может стелиться по земле. Вещество может образовать взрывоопасные перекиси при контакте с сильными окислителями, такими как уксусная кислота, азотная кислота, перекись водорода. Реагирует с хлороформом и бромоформом при обычных условиях с опасностью пожара и взрыва. Ацетон агрессивен в отношении некоторых видов пластика.



Похожие статьи